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Abstract. In this note, we would like to bring the readers’ attention toward the fact that

[9, Section 3, Eq.(3.2)] is not a solution of the fractional differential equation [9, Section 3,

Eq.(3.1)].
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As is well known (see, for example, [1-5], [8], a great deal of attention has recently been paid to
the solution of differential equations involving both ordinary and partial derivatives of fractional
order. However, we propose to show here that [9, Section 3, Eq.(3.2)] is not a solution of the
fractional differential equation [9, Section 3, Eq.(3.1)].

We begin by recalling the following formulas:

(
Dα

0+f
)

(x) = λ f (x) (1)

and
f (x) = x1−α Eα,α (λxα) . (2)

Here the equations (1) and (2) correspond to Eq. (3.1) and Eq. (3.2) in [9]. The Mittag-Lefler
type function occurring in the equation (2) is defined by

Eµ,ν (z) :=
∞∑

n=0

zn

Γ (µn + ν)
. (3)

Making use of Eq. (2) and the definition (3), we observe that

f (x) = x1−α
∞∑

n=0

(λxα)n

Γ (αn + α)
=

∞∑

n=0

λn xαn+1−α

Γ (αn + α)

=
∞∑

n=0

λn

Γ (αn + α)
· Γ (αn + 2− α) · xαn+1−α

Γ (αn + 2− α)
,
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so that

(
Dα

0+f
)
(x) =

∞∑

n=0

λn Γ (αn + 2− α)
Γ (αn + α)

Dα
0+

(
xαn+1−α

Γ (αn + 2− α)

)

=
∞∑

n=0

λn Γ (αn + 2− α)
Γ (αn + α)

xαn+1−2α

Γ (αn + 2− 2α)
6= λf (x) .

Hence, clearly, (2) is not a solution of (1).

If we take

f (x) = xα−1 Eα,α (λxα) , (4)

then

f (x) =
∞∑

n=0

λn xαn+α−1

Γ (αn + α)
.

In this case, we readily see that

(
Dα

0+ f
)
(x) = Dα

0+

(
xαn+α−1

Γ (αn)

)∣∣∣∣
n=0

+
∞∑

n=1

λn

Γ (αn + α)
Dα

0+

(
xαn+α−1

Γ (αn + α)

)

=
x−1

Γ (0)
+

∞∑

n=1

λn xαn−1

Γ (αn)
, (5)

where, obviously, [7]
x−1

Γ (0)
=

x−1

(−1)!
= 0 whenever x 6= 0. (6)

Since the Riemann-Liouville fractional calculus is based upon a definite integral which is taken
over a non-empty interval (0, x), we can tacitly assume that x > 0. Thus, for x > 0, we find
from (5) and (6) that

(
Dα

0+ f
)
(x) =

∞∑

n=1

λn xαn−1

Γ (αn− 1)

=
∞∑

n=0

λn+1 xα(n+1)−1

Γ
(
α(n + 1)

)

= λ xα−1 Eα,α (λ xα) = λ f (x) (x > 0).

It follows that the correct solution of (1) is given by (4) under the explicitly-stated condition
that x > 0.

The above-mentioned error was reproduced in a relatively more recent survey-cum-expository
article [8] on the theory and applications of the Mittag-Leffler type functions which are associ-
ated with various operators of fractional calculus.

Finally, we turn to the familiar fact that the impulse or distributional (or generalized) function
δ(x), which is popularly known as the Dirac delta function, is traditionally defined, for any
suitably-constrained continuous function ϕ(x), by (see, for details, [2] and [6]; see also [5] and
[7]):
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δ(x) = 0 (x 6= 0) and
∫ ∞

−∞
δ(x)ϕ(x) dx = ϕ(0), (7)

so that, in particular, we have

δ(x) = 0 (x 6= 0) and
∫ ∞

−∞
δ(x) dx = 1. (8)

In light of Eq. (6), it is possible to set [7]

δ(x) =
x−1

Γ (0)
=

x−1

(−1)!
= 0 whenever x 6= 0. (9)

However, for obvious reasons, Eq. (9) cannot be construed to define the Dirac delta function
δ(x), simply because it does not satisfy the necessary second requirement in the definition (8).
Consequently, instead of the Dirac delta function δ(x), use should be (and has been) made in
Eq. (5) of the quotient involved in Eq. (6) and Eq. (9).
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